
Package: cycloids (via r-universe)
October 31, 2024

Type Package

Title Tools for Calculating Hypocycloids, Epicycloids, Hypotrochoids,
and Epitrochoids

Version 1.0.2

Date 2023-08-29

Author Peter Biber

Maintainer Peter Biber <castor.fiber@gmx.de>

Description Tools for calculating coordinate representations of
hypocycloids, epicyloids, hypotrochoids, and epitrochoids
(altogether called 'cycloids' here) with different scaling and
positioning options. The cycloids can be visualised with any
appropriate graphics function in R.

License GPL-3

Collate 'ZFunktionen.r'

Encoding UTF-8

Repository https://peterbiber.r-universe.dev

RemoteUrl https://github.com/peterbiber/cycloids

RemoteRef HEAD

RemoteSha cf2b908df819626912cbf925e4559ac5ab5279a4

Contents
cycloids-package . 2
ggT . 6
kgV . 8
npeaks . 9
zykloid . 10
zykloid.scaleA . 12
zykloid.scaleAa . 16
zykloid.scaleP . 18

Index 23

1

2 cycloids-package

cycloids-package Calculating coordinate representations of hypocycloids, epicyloids,
hypotrochoids, and epitrochoids

Description

Functions for calculating coordinate representations of hypocycloids, epicyloids, hypotrochoids,
and epitrochoids (altogether called ’cycloids’ here) with different scaling and positioning options.
The cycloids can be visualised with any appropriate graphics function in R.

Details

This package has been written for calculating cartesian coordinate representations of hypocycloids,
epicyloids, hypotrochoids, and epitrochoids (altogether called ’cycloids’ here). These can be easily
visualized with any R graphic routine that handles two-dimensional data. All examples shown here
use standard R graphics. While there are technical applications, the main purpose of this package
is to create mathematical artwork.
Geometrically, cycloids in the sense of this package are generated as follows (Figure 1, 2): Imagine
a circle cfix, with radius A, which is fixed on a plane. Another circle, cmov, with radius a, is
rolling along cfix’s circumference at the outside of cfix. The figure created by the trace of a point
on cmov’s circumference is called an epicycloid (Figure 1A). If cmov is rolling not at the outside
but at the inside of cfix, the trace of a point on cmov’s circumference is called a hypocycloid (Fig-
ure 2A).
If in both cases the tracepoint is not located on cmov’s circumference but at a fixed distance from
its midpoint either in- or outside cmov, the resulting figure is an epitrochoid (Figure 1B, C) or a
hypotrochoid (Figure 2B, C), respectively. Hypotrochoids and epitrochoids became quite popular
through toys like the spirograph.
The most important functions of the package are zykloid, zykloid.scaleA, zykloid.scaleAa,
and zykloid.scaleP.

cycloids-package 3

4 cycloids-package

Note

Type demo(cycloids) for seeing some examples.

Author(s)

Peter Biber
Maintainer: Peter Biber <castor.fiber@gmx.de>

References

Bronstein IN, Semendjaev KA, Musiol G, Muehlig H (2001): Taschenbuch der Mathematik, 5th
Edition, Verlag Harri Deutsch, 1186 p. (103 – 105)

http://en.wikipedia.org/wiki/Epicycloid

http://en.wikipedia.org/wiki/Hypocycloid

http://en.wikipedia.org/wiki/Epitrochoid

http://en.wikipedia.org/wiki/Hypotrochoid

http://en.wikipedia.org/wiki/Spirograph

See Also

zykloid, zykloid.scaleA, zykloid.scaleAa, zykloid.scaleP

Examples

library(cycloids)

Create and plot a hypocycloid, a hypotrochoid, an epicycloid,
and an epitrochoid, all of them with radii A = 5 and a = 3
npeaks(5, 3) # The cycloids will have five peaks
The hypocycloid
cyc <- zykloid(A = 5, a = 3, lambda = 1, hypo = TRUE)
plot(y ~ x, data = cyc, type = "l", asp = 1, xlim = c(-12, 12),

ylim = c(-12, 12), main = "A = 5, a = 3")
The hypotrochoid
cyc <- zykloid(A = 5, a = 3, lambda = 1/2, hypo = TRUE)
lines(y ~ x, data = cyc, type = "l", asp = 1, col = "green")
The epicycloid
cyc <- zykloid(A = 5, a = 3, lambda = 1, hypo = FALSE)
lines(y ~ x, data = cyc, type = "l", col = "red")
The epitrochoid
cyc <- zykloid(A = 5, a = 3, lambda = 1/2, hypo = FALSE)
lines(y ~ x, data = cyc, type = "l", col = "blue")
legend("topleft", c("hypocycloid", "hypotrochoid", "epicycloid",

"epitrochoid"), lty = rep("solid", 4),
col = c("black", "green", "red", "blue"), bty = "n")

cycloids-package 5

Same Framework, different shape: A = 17, a = 5
npeaks(17, 5) # The cycloids will have seventeen peaks
The hypocycloid
cyc <- zykloid(A = 17, a = 5, lambda = 1, hypo = TRUE)
plot(y ~ x, data = cyc, type = "l", asp = 1, xlim = c(-27, 27),

ylim = c(-27, 27), main = "A = 17, a = 5")
The hypotrochoid
cyc <- zykloid(A = 17, a = 5, lambda = 1/2, hypo = TRUE)
lines(y ~ x, data = cyc, type = "l", asp = 1, col = "green")
The epicycloid
cyc <- zykloid(A = 17, a = 5, lambda = 1, hypo = FALSE)
lines(y ~ x, data = cyc, type = "l", col = "red")
The epitrochoid
cyc <- zykloid(A = 17, a = 5, lambda = 1/2, hypo = FALSE)
lines(y ~ x, data = cyc, type = "l", col = "blue")
legend("topleft", c("hypocycloid", "hypotrochoid", "epicycloid",

"epitrochoid"), lty = rep("solid", 4),
col = c("black", "green", "red", "blue"), bty = "n")

Pretty - a classic Spirograph pattern with the same settings
for A (5) and a (3) as in the first example.
Varying parameters (here: lambda) within a loop often gives
nice results.
op <- par(mar = c(0,0,0,0)) # no plot margins
lambdax <- seq(0.85, by = -0.05, length.out = 14)
ccol <- rep(c("blue", "blue", "red", "red"), 4)
plot.new()
plot.window(asp = 1, xlim = c(-4.5, 4.5), ylim = c(-4.5, 4.5))
draw fourteen hypotrochoids with decreasing lambda
for (i in c(1:14)) {

z <- zykloid(5, 3, lambdax[i])
lines(y ~ x, data = z, type = "l", col = ccol[i])

} # for i
par(op) # set graphics parameters back to original values

A bit more of the same kind to get the big picture...
op <- par(mar = c(0,0,0,0)) # no plot margins
lambdax <- seq(1, by = -0.05, length.out = 16)
ccol <- rep(c("blue", "blue", "red", "red"), 4)
plot.new()
plot.window(asp = 1, xlim = c(-11, 11), ylim = c(-11, 11))
first loop: sixteen epitrochoids with decreasing lambda
for (i in 1:16) {

z <- zykloid(5, 3, lambdax[i], hypo = FALSE)
lines(y ~ x, data = z, type = "l", col = ccol[i])

} # for i - first loop

6 ggT

first loop: sixteen epitrochoids with decreasing lambda
for (i in 1:16) {

z <- zykloid(5, 3, lambdax[i], hypo = TRUE)
lines(y ~ x, data = z, type = "l", col = ccol[i])

} # for i - second loop
par(op) # set graphics parameters back to original values

Show off with an example for zykloid.scaleP
No plot margins, and ... paint it black
op <- par(mar = c(0,0,0,0), bg = "black")
lambdax <- seq(2, 0.0, -0.05) # Note: some lambdas are greater than 1
ccol <- rep(c("lightblue", "lightblue", "yellow", "yellow", "yellow"), 9)
plot.new()
plot.window(asp = 1, xlim = c(-1, 1), ylim = c(-1, 1))
for (ll in c(1:length(lambdax))) {

z <- zykloid.scaleP(A = 7, a = 5, hypo = TRUE, lambda = lambdax[ll])
lines(y ~ x, data = z, col = ccol[ll])

} # for ll
par(op) # set graphics parameters back to original values

Spiky Flower with zykloid.scaleA and zykloid
op <- par(mar = c(0,0,0,0), bg = "black")
plot.new()
plot.window(asp = 1, xlim = c(-150, 150), ylim = c(-150, 150))
z <- zykloid.scaleA(A = 90, a = 32, lambda = 1, Radius = 150, hypo = TRUE)
lines(y ~ x, data = z, col = "lightblue")
for (ll in seq(2, 0.8, -0.4)) {

if (ll == 2) ccol <- "royalblue"
else ccol <- "plum"
z <- zykloid(A = 90, a = 32, lambda = ll, hypo = TRUE, steps = 360, start = pi/2)
lines(y ~ x, data = z, col = ccol)

} # for ll
par(op)

ggT Calculates the greatest common divisor of two natural numbers a and
b based on the Euclidean Algorithm

Description

The function ggT calculates the greatest common divisor of two natural numbers. In this package
it is called by the function kgV which calculates the least common multiple of two natural numbers.
The latter is needed by the function zykloid and by the function npeaks which calculates the

ggT 7

number of peaks (or loops) a cycloid has. As the greatest common divisor might be useful for other
purposes, the function ggT is accessible to external use in this package.

Usage

ggT(a, b)

Arguments

a A natural number (integer value > 0)

b A natural number (integer value > 0)

Value

A natural number if a and b are natural numbers. In any other case, the function returns NA.

Author(s)

Peter Biber

References

Bronstein IN, Semendjaev KA, Musiol G, Muehlig H (2001): Taschenbuch der Mathematik, 5th
Edition, Verlag Harri Deutsch, 1186 p. (p. 333)

http://en.wikipedia.org/wiki/Euclidean_algorithm

See Also

kgV, npeaks

Examples

ggT(18, 6) # 6
ggT(38, 105) # 1
ggT(36, 9) # 9
ggT(12, 9) # 3
ggT(9, 12) # 3
ggT(-5, 12) # NA - only integer numbers > 0 allowed
ggT(3, 0) # NA - only integer numbers > 0 allowed
ggT(3.2, 12) # NA - only integer numbers > 0 allowed

8 kgV

kgV Calculates the least common multiple of two natural numbers a and b

Description

The function kgV calculates the least common multiple of two natural numbers. In this package it
is used by the function zykloid and by the function npeaks which calculates the number of peaks
(or loops) a cycloid has. As it might be useful for other purposes, it is externally available in this
package.

Usage

kgV(a, b)

Arguments

a A natural number (integer value > 0)
b A natural number (integer value > 0)

Value

A natural number if a and b are natural numbers. In any other case, the function returns NA.

Author(s)

Peter Biber

References

Bronstein IN, Semendjaev KA, Musiol G, Muehlig H (2001): Taschenbuch der Mathematik, 5th
Edition, Verlag Harri Deutsch, 1186 p. (p. 334)

http://en.wikipedia.org/wiki/Least_common_multiple

See Also

npeaks, ggT, zykloid

Examples

kgV(18, 6) # 18
kgV(38, 105) # 3990
kgV(36, 9) # 36
kgV(12, 9) # 36
kgV(9, 12) # 36
kgV(-5, 12) # NA - only integer numbers > 0 allowed
kgV(3, 0) # NA - only integer numbers > 0 allowed
kgV(3.2, 12) # NA - only integer numbers > 0 allowed

npeaks 9

npeaks Calculates the number of a cycloid’s peaks based on the radii A (fixed
circle) and a (moving circle)

Description

This function may be useful for calculating the number n of peaks a cycloid (zykloid) based on
the radii A (fixed circle) and a (moving circle) will have. The equation for n is

n = kgV (A, a)/a

where kgV (A, a) is the least common multiple of A and a as implemented in the function kgV

Usage

npeaks(A, a)

Arguments

A A natural number (integer value > 0)

a A natural number (integer value > 0)

Value

A natural number if A and a are natural numbers. In any other case, the function returns NA.

Author(s)

Peter Biber

See Also

kgV, ggT, zykloid

Examples

npeaks(18, 6) # 3
npeaks(38, 105) # 38
npeaks(36, 9) # 4
npeaks(12, 9) # 4
npeaks(9, 12) # 3
npeaks(-5, 12) # NA - only integer numbers > 0 allowed
npeaks(3, 0) # NA - only integer numbers > 0 allowed
npeaks(3.2, 12) # NA - only integer numbers > 0 allowed

10 zykloid

zykloid Core function for calculating coordinate representations of hypocy-
cloids, epicyloids, hypotrochoids, and epitrochoids (altogether called
’cycloids’ here)

Description

This is the package’s core function for calculating cycloids. These are represented by a set of two-
dimensional point coordinates. Although this function provides the essential mathematics, you may
want to use the wrappers zykloid.scaleA, zykloid.scaleAa, and zykloid.scaleP due to their
convenient scaling and positioning options.

Usage

zykloid(A, a, lambda, hypo = TRUE, steps = 360, start = pi/2)

Arguments

A The Radius of the fixed circle cfix. Must be an integer Number > 0.

a The radius of the moving circle cmov. Must be an integer Number > 0. Together
with A, a determines the resulting cycloid’s shape and number of peaks which
can be calculated with npeaks.

lambda The distance of the tracepoint from the moving circle’s (cmov) centre in rel-
ative units of its radius a. lambda = 1 means that the tracepoint is located
on cmov’s circumference. For lambda < 1, the tracepoint is on cmov’s area,
e.g. if lambda = 0.5, it is halfway between cmov’s centre and its circumfer-
ence. If lambda > 1 the tracepoint is outside cmov’s area, you might imag-
ine it being attached to a rod which is attached to cmov and crosses its centre.
E.g. lambda = 2 would mean that the tracepoint’s distance from cmov’s centre
equals 2 ∗ a. lambda = 0 produces a circle because the tracepoint is identical
with cmov’s centre.

hypo logical. If TRUE, the resulting figure is a hypocycloid (lambda = 1) or a hy-
potrochoid (lambda! = 1), because cmov is rolling along the inner side of the
fixed circle (cfix). If FALSE, an epicycloid (lambda = 1) or an epitrochoid
lambda! = 1 is generated, as cmov is rolling at the outside of cfix’s circum-
ference.

steps positive integer. The number of steps per circuit of the moving circle (cmov)
for which tracepoint positions are calculated. The default, 360, means steps of 1
degree for the movement of cmov. Analogously, steps = 720 would mean steps
of 0.5 degrees.

start Start angle (radians) of the moving circle’s (cmov) centre counterclockwise to
the horizontal with the fixed circle’s (cfix) centre as the pivot. The tracepoint
will start at a peak.

zykloid 11

Details

Geometrically, cycloids in the sense of this package are generated as follows (Figure 1, 2): Imagine
a circle cfix, with radius A, which is fixed on a plane. Another circle, cmov, with radius a, is
rolling along cfix’s circumference at the outside of cfix. The figure created by the trace of a point
on cmov’s circumference is called an epicycloid (Figure 1A). If cmov is rolling not at the outside
but at the inside of cfix, the trace of a point on cmov’s circumference is called an hypocycloid
(Figure 2A).
If in both cases the tracepoint is not located on cmov’s circumference but at a fixed distance from
its midpoint either in- or outside cmov, the resulting figure is an epitrochoid (Figure 1B, C) or a
hypotrochoid (Figure 2B, C), respectively.
With the arguments of zykloid as defined above, the centre of cfix in the origin, and phi being the
counterclockwise angle of cmov’s midpoint against the start position with cfix’ centre as the pivot,
the cartesian coordinates of a point on the cycloid are calculated as follows:

x = (A+ a) ∗ cos(phi+ start)− lambda ∗ a ∗ cos((A+ a)/a ∗ phi+ start)
y = (A+ a) ∗ sin(phi+ start)− lambda ∗ a ∗ sin((A+ a)/a ∗ phi+ start)

Value

A dataframe with the columns x and y. Each row represents a tracepoint position. The positions are
ordered along the trace with the last and the first point being identical in order to warrant a closed
figure when plotting the data.

Author(s)

Peter Biber

References

Bronstein IN, Semendjaev KA, Musiol G, Muehlig H (2001): Taschenbuch der Mathematik, 5th
Edition, Verlag Harri Deutsch, 1186 p. (103 - 105)

http://en.wikipedia.org/wiki/Epicycloid

http://en.wikipedia.org/wiki/Hypocycloid

http://en.wikipedia.org/wiki/Epitrochoid

http://en.wikipedia.org/wiki/Hypotrochoid

See Also

zykloid.scaleA, zykloid.scaleAa, zykloid.scaleP

Examples

Very simple example

12 zykloid.scaleA

cycl <- zykloid(A = 17, a = 9, lambda = 0.9, hypo = TRUE)
plot(y ~ x, data = cycl, asp = 1, type = "l")

More complex: Looks like a passion flower
op <- par(mar = c(0,0,0,0), bg = "black")
plot.new()
plot.window(asp = 1, xlim = c(-23, 23), ylim = c(-23, 23))
ll <- seq(2, 0, -0.2)
ccol <- rep(c("lightblue", "lightgreen", "yellow", "yellow",

"yellow"), 2)
for (i in c(1:length(ll))) {

z <- zykloid(A = 15, a = 7, lambda = ll[i], hypo = TRUE)
lines(y ~ x, data = z, col = ccol[i])

} # for i
par(op)

Dense hypotrochoids
op <- par(mar = c(0,0,0,0), bg = "black")
plot.new()
plot.window(asp = 1, xlim = c(-1.5, 1.5), ylim = c(-1.5, 1.5))
m <- zykloid(A = 90, a = 89, lambda = 0.01)
lines(y ~ x, data = m, col = "grey")
m <- zykloid(A = 90, a = 89, lambda = 0.02)
lines(y ~ x, data = m, col = "red")
m <- zykloid(A = 90, a = 89, lambda = 0.015)
lines(y ~ x, data = m, col = "blue")
par(op)

Fragile star
op <- par(mar = c(0,0,0,0), bg = "black")
plot.new()
plot.window(asp = 1, xlim = c(-14, 14), ylim = c(-14, 14))
l.max <- 1.6
l.min <- 0.1
ll <- seq(l.max, l.min, by = -1 * (l.max - l.min)/30)
n <- length(ll)
ccol <- rainbow(n, start = 2/3, end = 1)
for (i in c(1:n)) {

m <- zykloid(A = 9, a = 8, lambda = ll[i])
lines(y ~ x, data = m, type = "l", col = ccol[i])

} # for i
par(op)

zykloid.scaleA Wrapper for zykloid which allows to scale and position a cycloid by
the radius A of the fixed circle and its midpoint

zykloid.scaleA 13

Description

While zykloid provides the basic functionality for calculating cycloids, this functions allows to
re-size a cycloid by freely setting the radius on the fixed circle. In addition, the cycloid can be re-
positioned by locating the fix circle’s midpoint. See Figures 1 and 2 and zykloid for the geometrical
principles of cycloids.

Usage

zykloid.scaleA(A, a, lambda, hypo = TRUE, Cx = 0, Cy = 0,
RadiusA = 1, steps = 360, start = pi/2)

Arguments

A The Radius of the fixed circle before re-sizing. Must be an integer Number >
0. Together with a (see below), A is only determining the cycloid’s shape and
number of peaks (see npeaks), while its actual size is defined by the argument
RadiusA (see below).

a The radius of the moving circle before re-sizing. Must be an integer Number >
0. Together with A, a only determines the cycloid’s shape and number of peaks
(see npeaks), while its actual size is defined via the argument RadiusA (see
below).

lambda The distance of the tracepoint from the moving circle’s (cmov) centre in relative
units of its radius a. lambda = 1 means that the tracepoint is located on cmov’s
circumference. For lambda < 1, the tracepoint is on cmov’s area, e.g. if
lambda = 0.5, it is halfway between cmov’s centre and its circumference.
If lambda > 1 the tracepoint is outside cmov’s area, you might imagine it
being attached to a rod which is attached to cmov and originates from its centre.
E.g. lambda = 2 would mean that the tracepoint’s distance from cmov’s centre
equals 2 ∗ a. lambda = 0 produces a circle because the tracepoint is identical
with cmov’s centre.

hypo logical. If TRUE, the resulting figure is a hypocycloid (lambda = 1) or a hy-
potrochoid (lambda! = 1), because cmov is rolling along the inner side of the
fixed circle (cfix). If FALSE, an epicycloid (lambda = 1) or an epitrochoid
lambda! = 1 is generated, as cmov is rolling at the outside of cfix’s circum-
ference.

Cx x-coordinate of the fixed circle’s midpoint. Default is 0.

Cy y-coordinate of the fixed circle’s midpoint. Default is 0.

RadiusA The actual radius of the fixed circle. Default is 1.

steps positive integer. The number of steps per circuit of the moving circle (cmov)
for which tracepoint positions are calculated. The default, 360, means steps of 1
degree for the movement of cmov. Analogously, steps = 720 would mean steps
of 0.5 degrees.

start Start angle (radians) of the moving circle’s (cmov) centre counterclockwise to
the horizontal with the fixed circle’s (cfix) centre as the pivot. The tracepoint
will start at a peak.

14 zykloid.scaleA

Details

Value

A dataframe with the columns x and y. Each row represents a tracepoint position. The positions are
ordered along the trace with the last and the first point being identical in order to warrant a closed
figure when plotting the data.

Author(s)

Peter Biber

See Also

zykloid, zykloid.scaleAa, zykloid.scaleP

Examples

Same hypotrochoid scaled to different radii of the fix circle
cycl1 <- zykloid.scaleA(A = 7, a = 3, lambda = 2/3, RadiusA = 1.3)
cycl2 <- zykloid.scaleA(A = 7, a = 3, lambda = 2/3, RadiusA = 1.0)
cycl3 <- zykloid.scaleA(A = 7, a = 3, lambda = 2/3, RadiusA = 0.7)
plot (y ~ x, data = cycl1, asp = 1, col = "red", type = "l",

main = "A = 7, a = 3, lambda = 2/3")
lines(y ~ x, data = cycl2, asp = 1, col = "green")
lines(y ~ x, data = cycl3, asp = 1, col = "blue")
legend("topleft", c("RadiusA = 1.3", "RadiusA = 1.0", "RadiusA = 0.7"),

lty = rep("solid", 3), col = c("red", "green", "blue"), bty = "n")

In this example, RadiusA depends on the cosine of the x-coordinate
of the fixed circle's centre
op <- par(mar = c(0,0,0,0), bg = "black")
ctrx <- seq(-2*pi, 2*pi, pi/10)
ccol <- rainbow(length(ctrx))
plot.new()
plot.window(asp = 1, xlim = c(-8, 8), ylim = c(-0.5, 0.5))
for(i in c(1:length(ctrx))) {

zzz <- zykloid.scaleA(A = 9, a = 7, hypo = TRUE, Cx = ctrx[i],
Cy = -ctrx[i], lambda = 0.9,
RadiusA = 1.5 + cos(ctrx[i]), start = -pi/4)

lines(y ~ x, data = zzz, col = ccol[i])
} # for i
par(op)

Geometric degression of RadiusA makes a nice star
op <- par(mar = c(0,0,0,0), bg = "black")
plot.new()

zykloid.scaleA 15

plot.window(asp = 1, xlim = c(-10, 10), ylim = c(-10, 10))
rad <- 10
n <- 60
ccol <- heat.colors(n)
for(i in c(1:n)) {

if (i/2 != floor(i/2)) { sstart = pi/2 }
else { sstart = pi/4 }
zzz <- zykloid.scaleA(A = 4, a = 3, RadiusA = rad, lambda = 1,

start = sstart)
lines(y ~ x, data = zzz, col = ccol[i])
rad <- rad * 0.9

} # for i
par(op)

A windmill
op <- par(mar = c(0,0,0,0), bg = "black")
plot.new()
plot.window(asp = 1, xlim = c(-1.4, 1.4), ylim = c(-1.4, 1.4))
rrad <- sqrt(seq(0.1, 2, 0.1))
n <- length(rrad)
ccol <- rainbow(n, start = 0, end = 0.3)
for(i in c(1:n)) {

zzz <- zykloid.scaleA(A = 7, a = 3, RadiusA = rrad[i],
hypo = TRUE, lambda = 1.1,
start = pi/2 - (1*pi/7 - (i - 1) * 2*pi/(7 * n)))

lines(y ~ x, data = zzz, col = ccol[n + 1 - i])
} # for i
par(op)

Advanced Example: A series of cycloids with their centres
located on a logarithmic spiral
op <- par(mar = c(0,0,0,0), bg = "black")
plot.new()
plot.window(asp = 1, xlim = c(-50, 50), ylim = c(-50, 50))
a <- 1/32 # spiral's scaling constant
alpha <- pi/20 # spiral's slope angle
sphi <- seq(0, 18 * pi, pi/25) # series of angles for cycloid centres
rad <- a * exp(tan(alpha)*sphi) # corresponding spiral radii
spx <- rad * cos(sphi) # corresponding x-coordinates
spy <- rad *sin(sphi) # corresponding y-coordinates
n <- length(sphi)
ccol <- rainbow(n, start = 2/3, end = 1/2)
for (i in c(1:n)) {

czc <- zykloid.scaleA(A = 3, a = 1, lambda = 1.5,
Cx = spx[i], Cy = spy[i],
RadiusA = rad[i]/2.5, # cycloid radii depends on spiral radii
start = pi + sphi[i]) # angle cycloid towards spiral centre

lines(y ~ x, data = czc, col = ccol[i])
} # for i

16 zykloid.scaleAa

par(op)

zykloid.scaleAa Wrapper for zykloid which scales a cycloid by its outer radius and
allows free positioning

Description

While zykloid provides the basic functionality for calculating cycloids, this functions allows to
re-size a cycloid by freely setting the radius of its circumcircle. In addition, the cycloid can be re-
positioned by locating the fixed circle’s midpoint. This function behaves similarly as zykloid.scaleP.
See details. Figures 1 and 2 and zykloid describe the geometrical principles of cycloids.

Usage

zykloid.scaleAa(A, a, lambda, hypo = TRUE, Cx = 0, Cy = 0,
RadiusAa = 1, steps = 360, start = pi/2)

Arguments

A The Radius of the fixed circle before re-sizing. Must be an integer Number >
0. Together with a (see below), A is only determining the cycloid’s shape and
number of peaks (see npeaks), while its actual size is defined by the argument
RadiusAa (see below).

a The radius of the moving circle before re-sizing. Must be an integer Number >
0. Together with A, a only determines the cycloid’s shape and number of peaks
(see npeaks), while its actual size is defined via the argument RadiusAa (see
below).

lambda The distance of the tracepoint from the moving circle’s (cmov) centre in rel-
ative units of its radius a. lambda = 1 means that the tracepoint is located
on cmov’s circumference. For lambda < 1, the tracepoint is on cmov’s area,
e.g. if lambda = 0.5, it is halfway between cmov’s centre and its circumfer-
ence. If lambda > 1 the tracepoint is outside cmov’s area, you might imag-
ine it being attached to a rod which is attached to cmov and crosses its centre.
E.g. lambda = 2 would mean that the tracepoint’s distance from cmov’s centre
equals 2 ∗ a. lambda = 0 produces a circle because the tracepoint is identical
with cmov’s centre.

hypo logical. If TRUE, the resulting figure is a hypocycloid (lambda = 1) or a
hypotrochoid (lambda! = 1), because cmov is rolling along the inner side of
the fixed circle (cfix). If FALSE, an epicycloid (lambda = 1) or an epitrochoid
λ! = 1 is generated, as cmov is rolling at the outside of cfix’s circumference.

Cx x-coordinate of the fixed circle’s midpoint. Default is 0.

Cy y-coordinate of the fixed circle’s midpoint. Default is 0.

RadiusAa The actual radius of the cycloids outer circle. Default is 1.

zykloid.scaleAa 17

steps positive integer. The number of steps per circuit of the moving circle (cmov)
for which tracepoint positions are calculated. The default, 360, means steps of 1
degree for the movement of cmov. Analogously, steps = 720 would mean steps
of 0.5 degrees.

start Start angle (radians) of the moving circle’s (cmov) centre counterclockwise to
the horizontal with the fixed circle’s (cfix) centre as the pivot. The tracepoint
will start at a peak.

Details

This function scales in either case the radius of the whole cycloid’s circumcircle. Thus, for hypocy-
cloids and hypotrochoids it will behave the same way as zykloid.scaleP. For epicycloids and
epitrochoids their output will be different. zykloid.scaleAa scales the outer edge of the figure, while
zykloid.scaleP always scales the circle where the peaks of the figure are located on. In the case
of epicycloids and epitrochoids this is at the inside of the figure (see examples).
Figure 1 and 2 show the principle behind cycloid construction:

Value

A dataframe with the columns x and y. Each row represents a tracepoint position. The positions are
ordered along the trace with the last and the first point being identical in order to warrant a closed
figure when plotting the data.

Author(s)

Peter Biber

See Also

zykloid, zykloid.scaleA, zykloid.scaleP

Examples

Same epicycloid scaled to different maximum radii of the figure
cycl1 <- zykloid.scaleAa(A = 21, a = 11, lambda = 1, hypo = FALSE,

RadiusAa = 100)
cycl2 <- zykloid.scaleAa(A = 21, a = 11, lambda = 1, hypo = FALSE,

RadiusAa = 70)
cycl3 <- zykloid.scaleAa(A = 21, a = 11, lambda = 1, hypo = FALSE,

RadiusAa = 40)
plot (y ~ x, data = cycl1, col = "red", asp = 1, type = "l",

main = "A = 21, a = 11, lambda = 1")
lines(y ~ x, data = cycl2, col = "green")
lines(y ~ x, data = cycl3, col = "blue")
legend("topleft", c("RadiusAa = 100", "RadiusAa = 70", "RadiusAa = 40"),

lty = rep("solid", 3), col = c("red", "green", "blue"), bty = "n")

Pentagram by constructing a hypocycloid and an epicycloid
with the same outer radius and scaling this radius exponentially

18 zykloid.scaleP

op <- par(mar = c(0,0,0,0), bg = "black")
plot.new()
plot.window(asp = 1, xlim = c(-40, 40), ylim = c(-40, 40))
n <- 20
ccol <- heat.colors(n)
for(i in c(1:n)) {

zzz <- zykloid.scaleAa(A = 5, a = 2,
RadiusAa = 38*exp(-0.05*(i-1)), hypo = FALSE, lambda = 1)

lines(y ~ x, data = zzz, col = ccol[i])
zzz <- zykloid.scaleAa(A = 5, a = 2,

RadiusAa = 38*exp(-0.05*(i-1)), hypo = TRUE, lambda = 1)
lines(y ~ x, data = zzz, col = ccol[i])

} # for i
par(op)

Psychedelic star by modifying lambda while keeping the outer
radius constant
op <- par(mar = c(0,0,0,0), bg = "black")
plot.new()
plot.window(asp = 1, xlim = c(-5, 5), ylim = c(-5, 5))
llam <- seq(0, 8, 0.2)
ccol <- terrain.colors(length(llam))
for(i in c(1:length(llam))) {

zzz <- zykloid.scaleAa(A = 5, a = 1, RadiusAa = 4.5,
hypo = FALSE, lambda = llam[i])

lines(y ~ x, data = zzz, col = ccol[i])
} # for i
par(op)

zykloid.scaleP Wrapper for zykloid which scales a cycloid by the circle its peaks are
located on and allows free positioning

Description

While zykloid provides the basic functionality for calculating cycloids, this functions allows to
re-size a cycloid by freely setting the radius of the circle its peaks are located on. In addition, the
cycloid can be re-positioned by locating the fixed circle’s midpoint. This function behaves similarly
as zykloid.scaleAa. See details. See Figures 1, 2, and zykloid for the geometrical principles of
cycloids.

Usage

zykloid.scaleP(A, a, lambda, hypo = TRUE, Cx = 0, Cy = 0,
RadiusP = 1, steps = 360, start = pi/2)

zykloid.scaleP 19

Arguments

A The Radius of the fix circle before re-sizing. Must be an integer Number >
0. Together with a (see below), A is only determining the cycloid’s shape and
number of peaks (see npeaks), while its actual size is defined by the argument
RadiusP (see below).

a The radius of the moving circle before re-sizing. Must be an integer Number >
0. Together with A, a only determines the cycloid’s shape and number of peaks
(see npeaks), while its actual size is defined via the argument RadiusP (see
below).

lambda The distance of the tracepoint from the moving circle’s (cmov) centre in relative
units of its radius a. lambda = 1 means that the tracepoint is located on cmov’s
circumference. For lambda < 1, the tracepoint is on cmov’s area, e.g. if
lambda = 0.5, it is halfway between cmov’s centre and its circumference.
If lambda > 1 the tracepoint is outside cmov’s area, you might imagine it
being attached to a rod which is attached to cmov and crosses its centre. E.g.
lambda = 2 would mean that the tracepoint’s distance from cmov’s centre
equals 2 ∗ a. lambda = 0 produces a circle because the tracepoint is identical
with cmov’s centre.

hypo logical. If TRUE, the resulting figure is a hypocycloid (lambda = 1) or a hy-
potrochoid (lambda! = 1), because cmov is rolling along the inner side of the
fixed circle (cfix). If FALSE, an epicycloid (lambda = 1) or an epitrochoid
(lambda! = 1) is generated, as cmov is rolling at the outside of cfix’s circum-
ference.

Cx x-coordinate of the fix circle’s midpoint. Default is 0.

Cy y-coordinate of the fix circle’s midpoint. Default is 0.

RadiusP The actual radius of the circle the cycloid’s peaks are located on. Default is 1.

steps positive integer. The number of steps per circuit of the moving circle (cmov)
for which tracepoint positions are calculated. The default, 360, means steps of 1
degree for the movement of cmov. Analogously, steps = 720 would mean steps
of 0.5 degrees.

start Start angle (radians) of the moving circle’s (cmov) centre counterclockwise to
the horizontal with the fixed circle’s (cfix) centre as the pivot. The tracepoint
will start at a peak.

Details

This function scales the radius of the circle the cycloids peaks are located on. For hypocycloids and
hypotrochoids it will thus behave the same way as zykloid.scaleAa. For epicycloids and epitro-
choids the output will be different. While zykloid.scaleAa scales the outer edge of the figure,
zykloid.scaleP always scales the circle where the peaks of the figure are located on. In the case of
epicycloids and epitrochoids this is at the inside of the figure (see examples below).
Figure 1 and 2 show the principle behind cycloid construction:

20 zykloid.scaleP

Value

A dataframe with the columns x and y. Each row represents a tracepoint position. The positions are
ordered along the trace with the last and the first point being identical in order to warrant a closed
figure when plotting the data.

Author(s)

Peter Biber

See Also

zykloid, zykloid.scaleA, zykloid.scaleAa

Examples

Epitrochoids with different lambda scaled to the same radius of
the peak circle
cycl1 <- zykloid.scaleP(A = 21, a = 11, lambda = 1.2, hypo = FALSE,

RadiusP = 10)
cycl2 <- zykloid.scaleP(A = 21, a = 11, lambda = 1.0, hypo = FALSE,

RadiusP = 10)
cycl3 <- zykloid.scaleP(A = 21, a = 11, lambda = 0.8, hypo = FALSE,

RadiusP = 10)
plot (y ~ x, data = cycl1, col = "red", asp = 1, type = "l",

main = "A = 21, a = 11, RadiusP = 10")
lines(y ~ x, data = cycl2, col = "green")
lines(y ~ x, data = cycl3, col = "blue")
legend("topleft", c("lambda = 1.2", "lambda = 1.0", "lambda = 0.8"),

lty = rep("solid", 3), col = c("red", "green", "blue"),
bty = "n")

Cool Disk by scaling the start angle with an
exponential function ...
op <- par(mar = c(0,0,0,0), bg = "black")
plot.new()
plot.window(asp = 1, xlim = c(-11, 11), ylim = c(-11, 11))
n <- 30
ccol <- topo.colors(n)
for(i in c(1:n)) {

zzz <- zykloid.scaleP(A = 3, a = 1, RadiusP = 6, lambda = 1,
start = 2*pi/3 * exp(-0.1 * (i - 1)), hypo = FALSE)

lines(y ~ x, data = zzz, col = ccol[i])
} # for i
par(op)

... the free space in the centre could be filled with
the corresponding hypocycloid ...
op <- par(mar = c(0,0,0,0), bg = "black")

zykloid.scaleP 21

plot.new()
plot.window(asp = 1, xlim = c(-11, 11), ylim = c(-11, 11))
n <- 30
ccol <- topo.colors(n)
for(i in c(1:n)) {

zzz <- zykloid.scaleP(A = 3, a = 1, RadiusP = 6, lambda = 1,
start = 2*pi/3 * exp(-0.1 * (i - 1)), hypo = FALSE)

lines(y ~ x, data = zzz, col = ccol[i])
zzz <- zykloid.scaleP(A = 3, a = 1, RadiusP = 6, lambda = 1,

start = 2*pi/3 * exp(-0.1 * (i - 1)), hypo = TRUE)
lines(y ~ x, data = zzz, col = ccol[i])

} # for i
par(op)

... or the same ring again and again.
op <- par(mar = c(0,0,0,0), bg = "black")
plot.new()
plot.window(asp = 1, xlim = c(-11, 11), ylim = c(-11, 11))
n <- 30
ccol <- topo.colors(n)
rad <- 6
for(g in c(1:7)) {

for(i in c(1:n)) {
zzz <- zykloid.scaleP(A = 3, a = 1, RadiusP = rad,

lambda = 1, start = 2*pi/3 * exp(-0.1 * (i - 1)),
hypo = FALSE)

lines(y ~ x, data = zzz, col = ccol[i])
} # for i
rad <- rad * 3/5

} # for g
par(op)

Cauliflower pattern. Here, an exponential function is used
for scaling the radius of the circle the cycloid's loops
are on.
op <- par(mar = c(0,0,0,0), bg = "black")
plot.new()
plot.window(asp = 1, xlim = c(-22, 22), ylim = c(-22, 22))
n <- 15
dcol <- heat.colors(n)
for(i in c(1:n)) {

lambdax <- seq(2.0, 2.2, 0.1)
for(j in c(1:length(lambdax))) {

zzz <- zykloid.scaleP(A = 11, a = 1,
RadiusP = 15 * exp(-0.3 * (i - 1)),
lambda = lambdax[j], hypo = FALSE,
start = pi/2 + (i - 1)*pi/11)

if(j/2 == floor(j/2)) { colx <- "blue" }
else { colx <- dcol[n + 1 - i] }

22 zykloid.scaleP

lines(y ~ x, data = zzz, col = colx)
} # for j

} # for i
par(op)

Sparkling star
op <- par(mar = c(0,0,0,0), bg = "black")
plot.new()
plot.window(asp = 1, xlim = c(-15, 15), ylim = c(-15, 15))
llam <- seq(0, 8, 0.2)
ccol <- rainbow(length(llam), start = 2/3, end = 1/3)
for(i in c(1:length(llam))) {

zzz <- zykloid.scaleP(A = 5, a = 1, RadiusP = 2.1,
hypo = FALSE, lambda = llam[i], start = pi/5)

lines(y ~ x, data = zzz, col = ccol[i])
} # for i
par(op)

Index

∗ graphs
cycloids-package, 2
zykloid, 10
zykloid.scaleA, 12
zykloid.scaleAa, 16
zykloid.scaleP, 18

∗ math
cycloids-package, 2
ggT, 6
kgV, 8
npeaks, 9
zykloid, 10
zykloid.scaleA, 12
zykloid.scaleAa, 16
zykloid.scaleP, 18

cycloids (cycloids-package), 2
cycloids-package, 2

ggT, 6, 8, 9

kgV, 6, 7, 8, 9

npeaks, 6–8, 9, 10, 13, 16, 19

zykloid, 2, 4, 6, 8, 9, 10, 12–14, 16–18, 20
zykloid.scaleA, 2, 4, 10, 11, 12, 17, 20
zykloid.scaleAa, 2, 4, 10, 11, 14, 16, 18–20
zykloid.scaleP, 2, 4, 10, 11, 14, 16, 17, 18

23

	cycloids-package
	ggT
	kgV
	npeaks
	zykloid
	zykloid.scaleA
	zykloid.scaleAa
	zykloid.scaleP
	Index

